CSE 564
VISUALIZATION \& VISUAL ANALYTICS HIGH-DIMENSIONAL DATA

Klaus Mueller

Computer Science Department Stony Brook University

Lecture	Topic	
$\mathbf{1}$	Intro, schedule, and logistics	
$\mathbf{2}$	Applications of visual analytics	Project \#1 out
$\mathbf{3}$	Basic tasks, data types	
$\mathbf{4}$	Data assimilation and preparation	
$\mathbf{5}$	Introduction to D3	
$\mathbf{6}$	Bias in visualization	Project \#2(a) out
$\mathbf{7}$	Data reduction and dimension reduction	
$\mathbf{8}$	Data reduction and dimension reduction	Project \#2(b) out
$\mathbf{9}$	Visual perception and cognition	
$\mathbf{1 0}$	Visual design and aesthetics	
$\mathbf{1 1}$	Cluster analysis: numerical data	
$\mathbf{1 2}$	Cluster analysis: categorical data	
$\mathbf{1 3}$	High-dimensional data visualization	
$\mathbf{1 4}$	Dimensionality reduction and embedding methods	
$\mathbf{1 5}$	Principles of interaction	
$\mathbf{1 6}$	Midterm \#1	
$\mathbf{1 7}$	Visual analytics	Final project proposal due
$\mathbf{1 8}$	The visual sense making process	
$\mathbf{1 9}$	Maps	Project 3 out
$\mathbf{2 0}$	Visualization of hierarchies	Final Project preliminary report due call out
$\mathbf{2 1}$	Visualization of time-varying and time-series data	
$\mathbf{2 2}$	Foundations of scientific and medical visualization	
$\mathbf{2 3}$	Volume rendering	
$\mathbf{2 4}$	Scientific and medical visualization	
$\mathbf{2 5}$	Visual analytics system design and evaluation	
$\mathbf{2 6}$	Memorable visualization and embellishments	
$\mathbf{2 7}$	Infographics design	
$\mathbf{2 8}$	Midterm \#2	

INTERLUDE - BOX PLOTS

You may have heard about box plots

Tend to be bewildering to many

- hard to interpret

They can also give the wrong representation of data

- assume normal distributed data

Box PLots

Non-normal distributed data give "wrong" box plots

- shown here: data on student test scores

DENSITY PLOTS

Same data than last side, multiple classes

Student Test Scores by Class

Student Test Scores by Class

STRIP PLOTS

Study Participants by Age

Study Participants by Age

SEMITRANSPARENT VS. JITTERING

Age Distribution by Group
70 years old

0

Age Distribution by Group
70 years old

0

Group
Group
"B"
Group

COMPARISON

Age Distribution by Group

Age Distribution by Group 70 years old

Age Distribution by Group

With median lines

Read more here:
https://nightingaledvs.com/ive-stopped-using-box-plots-shouldyou/

LOLLIPOP CHARTS

makes it easier to see and compare positions than scatter plots

RECTANGULAR DATASET

One data item

The variables or features

\rightarrow the attributes or properties we measured

The data items or feature vectors \rightarrow the samples (observations) we obtained from the population of all instances

		\rightarrow the attributes or properties we measured							
		B	C	D	E	F	G	H	1
1	Name	Country	Miles Per Gallon	Accceleration,	Horsepower	weight	cylinders	year	price
2	Volkswagen Rabbit DI	Germany	43,1	21,5	48	1985	4	78	2400
3	Ford Fiesta	Germany	36,1	14,4	66	1800	4	78	1900
4	Mazda GLC Deluxe	Japan	32,8	19,4	52	1985	4	78	2200
5	Datsun B210 GX	Japan	39,4	18,6	70	2070	4	78	2725
6	Honda Civic CVCC	Japan	36,1	16,4	60	1800	4	78	2250
7	Oldsmobile Cutlass	USA	19,9	15,5	110	3365	8	78	3300
8	Dodge Diplomat	USA	19,4	13,2	140	3735	8	78	3125
9	Mercury Monarch	USA	20,2	12,8	139	3570	8	78	2850
10	Pontiac Phoenix	USA	19,2	19,2	105	3535	6	78	2800
11	Chevrolet Malibu	USA	20,5	18,2	95	3155	6	78	3275
12	Ford Fairmont A	USA	20,2	15,8	85	2965	6	78	2375
13	Ford Fairmont M	USA	25,1	15,4	88	2720	4	78	2275
14	Plymouth Volare	USA	20,5	17,2	100	3430	6	78	2700
15	AMC Concord	USA	19,4	17,2	90	3210	6	78	2300
16	Buick Century	USA	20,6	15,8	105	3380	6	78	3300
17	Mercury Zephyr	USA	20,8	16,7	85	3070	6	78	2425
18	Dodge Aspen	USA	18,6	18,7	110	3620	6	78	2700
19	AMC Concord D1	USA	18,1	15,1	120	3410	6	78	2425
20	Chevrolet MonteCarlo	USA	19,2	13,2	145	3425	8	78	3900
21	Buick RegalTurbo	USA	17,7	13,4	165	3445	6	78	4400
22	Ford Futura	Germany	18,1	11,2	139	3205	8	78	2525
23	Dodge Magnum XE	USA	17,5	13,7	140	4080	8	78	3000
24	Chevrolet Chevette	USA	30	16,5	68	2155	4	78	2100

UNDERSTANDING HIGH-D ObJECTS

Feature vectors are typically high dimensional

- this means, they have many elements
- high dimensional space is tricky
- most people do not understand it
- why is that?
- well, because you don't learn to see high-D when your vision system develops

Object permanence (Jean Piaget)

- the ability to create mental pictures or remember objects and people you have previously seen
- thought to be a vital precursor to creativity and abstract thinking

HIGH-D SPACE IS TRICKY

The curse of dimensionality
As $n \rightarrow \infty$

- Cube: side length l, diagonal d, volume V
- $V \rightarrow \infty$ for $l>1$
- $V \rightarrow 0$ for $l<1$
- $\quad V=1$ for $l=1$
- $\quad d \rightarrow \infty$

and very sparse
and not here

HIGH-D SPACE IS TRICKY

Essentially hypercube is like a "hedgehog"

CURSE OF DIMENSIONALITY

Points are all at about the same distance from one another

- concentration of distances
- fundamental equation (Bellman, '61)

$$
\lim _{n \rightarrow \infty} \frac{\text { Dist }_{\max }-\text { Dist }_{\min }}{\text { Dist }_{\min }} \rightarrow 0
$$

- so as n increases, it is impossible to distinguish two points by (Euclidian) distance
- unless these points are in the same cluster of points

SPARSENESS DEMONSTRATION

Space gets extremely sparse

- with every extra dimension points get pulled apart further
- distances become meaningless

SPARSENESS DEMONSTRATION

Space gets extremely sparse

- with every extra dimension points get pulled apart further
- distances become meaningless

1D - points are very close

2D - points spread apart

3D - getting even sparser
4D, 5D, ... - sparseness grows further

Space and Memory Management

Indexing (and storage) also gets very expensive

- exponential growth in the number of dimensions

16 cells

$16^{2}=256$ cells

$16^{3}=4,096$ cells

- 4D: 65k cells 5D: 1 M cells 6D: 16M cells 7D: 268 M cells
- keep a keen eye on storage complexity

SCATTERPLOT MATRIX

SCATTERPLOTS

Projection of the data items into a bivariate basis of axes

But what if you have more than two variables?

SCATTERPLOT MATRIX

Problem:

- multivariate relationships are scattered across the tiles
- difficult to see multivariate relationships
- biplots are one way to visualize these - there are others

BIPLOTS

Projection Operations

How does 2D projection work in practice?

- N-dimensional point $x=\left\{x_{1} . x_{2}, x_{3}, \ldots x_{N}\right\}$
- a basis of two orthogonal axis vectors defined in N-D space

$$
\begin{aligned}
& a=\left\{a_{1} \cdot a_{2}, a_{3}, \ldots a_{N}\right\} \\
& b=\left\{b_{1} \cdot b_{2}, b_{3}, \ldots b_{N}\right\}
\end{aligned}
$$

- a projection $\left\{\mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}\right\}$ of x into the 2D basis spanned by $\{\mathrm{a}, \mathrm{b}\}$ is:

$$
\begin{aligned}
& x_{a}=a \cdot x^{\top} \\
& x_{b}=b \cdot x^{\top}
\end{aligned}
$$

where \cdot is the dot product, T is the transpose

PROJECTION AMBIGUITY

Projection causes inaccuracies

- close neighbors in the projections may not be close neighbors in the original higher-dimensional space
- this is called projection ambiguity

BIPLOTS

Plots data points and dimension axes into a single visualization

- uses first two PCA vectors as the basis to project into
- find plot coordinates $[x][y]$
for data points: $\left[P C A_{1} \cdot\right.$ data vector $]\left[P C A_{2} \cdot\right.$ data vector $]$ for dimension axes: [PCA, [dimension]] [PCA ${ }_{2}$ [dimension]]

Biplots Can Have Projection AMBIGUITIES

Are just a linear projection into the 2D basis generated by PCA

Cape Bounty and Sanagak Lake Correspondence Analysis with Ecological Classes

BIPLOTS - A WORD OF CAUTION

Do be aware that the projections may not be fully accurate

- you are projecting N-D into 2D by a linear transformation
- if there are more than 2 significant PCA vectors then some variability will be lost and won't be visualized
- remote data points might project into nearby plot locations suggesting false relationships \rightarrow projection ambiguity
- always check out the PCA scree plot to gauge accuracy

INTERACTIVE BIPLOTS

Also called multivariate scatterplot

- biplot-axes length vis replaced by graphical design
- less cluttered view
- but there's more to this

Meet the Subspace Voyager

Decomposes high-D data spaces into lower-D subspaces by

- clustering
- classification
- reducing clusters to intrinsic dimensionality via local PCA

Allows users to interactively explore these lower-D subspaces

- explore them as a chain of 3D subspaces
- transition seamlessly to adjacent 3D subspaces on demand
- save observations as you go (and return to them just as well)

TRACKBALL-BASED CLUSTER EXPLORATION

Interactive View Optimizer

Uses genetic-algorithm driven projection pursuit Several view quality metrics are available

CHASE INTERESTING CLUSTERS TRANSITION TO ADJACENT 3D SUBSPACES

Multidimensional Scaling (MDS)

MULTIDIMENSIONAL SCALING (MDS)

MDS preserves similarity relationships, prevents ambiguity

- scattered points in high-dimensions (N-D)
- adjacency matrices

Maps the distances between observations from N-D into lowD (say 2D)

- attempts to ensure that differences between pairs of points in this reduced space match as closely as possible

The input to MDS is a distance (similarity) matrix

- actually, you use the dissimilarity matrix because you want similar points mapped closely
- dissimilar point pairs will have greater values and map father apart

THE DISSIMILARITY MATRIX

Data Matrix

point	attribute1	attribute2
$\boldsymbol{x} \boldsymbol{1}$	1	2
$\boldsymbol{x} \mathbf{2}$	3	5
$\boldsymbol{x} \mathbf{3}$	2	0
$\boldsymbol{x} \mathbf{4}$	4	5

Dissimilarity Matrix
(with Euclidean Distance)

	$\boldsymbol{x} \boldsymbol{1}$	$\boldsymbol{x} \mathbf{2}$	$\boldsymbol{x} \mathbf{3}$	$\boldsymbol{x 4}$
$\boldsymbol{x} \mathbf{1}$	0			
$\boldsymbol{x} \mathbf{2}$	3.61	0		
$\boldsymbol{x} \mathbf{3}$	2.24	5.1	0	
$\boldsymbol{x 4}$	4.24	1	5.39	0

DISTANCE MATRIX

MDS turns a distance matrix into a network or point cloud

- correlation, cosine, Euclidian, and so on

Suppose you know a matrix of distances among cities

Chicago Raleigh Boston Seattle S.F. Austin Orlando

Chicago	0					
Raleigh	641	0				
Boston	851	608	0			
Seattle	1733	2363	2488	0	0	0
S.F.	1855	2406	2696	684	1495	0

RESULT OF MDS

COMPARE WITH REAL MAP

MDS ALGORITHM

- Task:
- Find that configuration of image points whose pairwise distances are most similar to the original inter-point distances !!!
- Formally:
- Define: $D_{i j}=\left\|x_{i}-x_{j}\right\|_{D} \quad d_{i j}=\left\|y_{i}-y_{j}\right\|_{d}$
- Claim: $\quad \mathrm{D}_{\mathrm{ij}} \equiv \mathrm{d}_{\mathrm{ij}} \quad \forall \mathrm{i}, \mathrm{j} \in[1, \mathrm{n}]$
- In general: an exact solution is not possible !!!
- Inter Point distances \rightarrow invariance features

MDS ALGORITHM

Strategy (of metric MDS):

- iterative procedure to find a good configuration of image points
- 1) Initialization
\rightarrow Begin with some (arbitrary) initial configuration
- 2) Alter the image points and try to find a configuration of points that minimizes the following sum-of-squares error function:

MDS ALGORITHM

Strategy (of metric MDS):

- iterative procedure to find a good configuration of image points

1) Initialization
\rightarrow Begin with some (arbitrary) initial configuration

- 2) Alter the image points and try to find a configuration of points that minimizes the following sum-of-squares error function:

$$
E=\sum_{i<j}^{N}\left(D_{i j}-d_{i j}\right)^{2}
$$

FORCE-DIRECTED ALGORITHM

Spring-like system

- insert springs within each node
- the length of the spring encodes the desired node distance
- start at an initial configuration
- iteratively move nodes until an energy minimum is reached

FORCE-DIRECTED ALGORITHM

Spring-like system

- insert springs within each node
- the length of the spring encodes the desired node distance
- start at an initial configuration
- iteratively move nodes until an energy minimum is reached

Uses of MDS

Distance (similarity) metric

- Euclidian distance (best for data)
- Cosine distance (best for data)
- 1-|correlation| distance (best for attributes)
- use || if you do not care about positive or negative correlations
- leave off || if you want positively correlated attribute points closer

MDS EXAMPLES

MDS IN SCIKIT-LEARN

sklearn.manifold.MDS

```
class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1,
random_state=None, dissimilarity='euclidean')
[source]
```

sklearn.manifold.MDS(
n_components=2,
metric $=$ True,
n_init=4, Number of time the smacof algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress.
max_iter $=300$, Maximum number of iterations of the SMACOF algorithm for a single run
verbose $=0$,
$e p s=0.001$, relative tolerance w.r.t stress to declare converge
$n_{-} j o b s=1$,
random_state $=$ None,
dissimilarity= 'euclidean') Which dissimilarity measure to use. Supported are 'euclidean' and 'precomputed'.
The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a multidimensional scaling algorithm which minimizes an objective function (the stress) using a majorization technique.

PARALLEL COORDINATES

Parallel Coordinates - 1 Car

The $\mathrm{N}=7$ data axes are arranged side by side

- in parallel

Parallel Coordinates - 100 CARS

Hard to see the individual cars?

- what can we do?

Parallel Coordinates - 100 CARS

Grouping the cars into sub-populations

- we perform clustering
- an be automated or interactive (put the user in charge)

PC With Illustrative Abstraction

individual polylines

PC With Illustrative Abstraction

completely abstracted away

PC With Illustrative Abstraction

blended partially

PC With Illustrative Abstraction

[McDonnell and Mueller, 2008]

Interaction is Key

Interaction in Parallel Coordinate

PATTERNS IN PARALLEL COORDINATES

Patterns in Parallel Coordinates

\# points

Fisher-z (corresponding to $\rho=0, \pm 0.462, \pm 0.762, \pm 0.905$)

PATTERNS IN SCATTERPLOTS

\# points

Fisher-z (corresponding to $\rho=0, \pm 0.462, \pm 0.762, \pm 0.905$)
Li et al. found that twice as many correlation levels can be distinguished with scatterplots Information Visualization Vol. 9, 1, 13 - 30

AXIS REORDERING PROBLEM

There are n ! ways to order the n dimensions

- how many orderings for 7 dimensions?
- 5,040
- but since can see relationships across 3 axes a better estimate is $n!/((n-3)!3!)=35$
- still a lot of axes orderings to try out \rightarrow we need help

We Need a Measure for Relationships

Correlation

- a statistical measure that indicates the extent to which two or more variables fluctuate together

BuIlding the Correlation Matrix

Create a correlation matrix

Run a mass-spring model
Run Traveling Salesman on the correlation nodes Use it to order your parallel coordinate axes via TSP
Z. Zhang, K. McDonnell, K. Mueller, "A NetworkBased Interface for the Exploration of HighDimensional Data Spaces, " IEEE Pacific Vis, 2012

INTERACTION WITH THE CORRELATION NETWORK

- Vertices are attributes, edges are correlations
- vertex: size determined by $\sum_{j=0}^{D} \frac{|\operatorname{correlation}(i, j)|}{D-1} j \neq i$
- edge length is a measure of (1-|correlation|)
- edge: color/intensity \rightarrow sign/strength of correlation

all edges

attribute centric

subset of attributes

MULTISCALE ZOOMING

Z. Zhang, K. McDonnell, K. Mueller, "A Network-Based Interface for the Exploration of High-Dimensional Data Spaces, " IEEE Pacific Vis, 2012

BRACKETING AND CONDITIONING

Correlation strength can often be improved by constraining a variable's value range

- this limits the derived relationships to this value range
- such limits are commonplace in targeted marketing, etc.

no bracketing

lower price range

higher price range
Z. Zhang, K. McDonnell, E. Zadok, K. Mueller, "Visual Correlation Analysis of Numerical and Categorical Data on the Correlation Map," IEEE TVCG, 2015.

Correlation Plots Are Powerful

Fused dataset of 50 US colleges

US News: academic rankings
College Prowler: survey on campus life attributes

RADIAL LAYOUTS

Star Coordinates

Coordinate system based on axes positioned in a "star", or circular pattern

- no prior PCA and subsequent projection
- instead, a point P is plotted as a vector sum of all axis coordinates

Star Coordinates

Operations defined on Star Coords

- scaling changes contribution to resulting visualization
- axis rotation can visualize correlations
- also used to reduce projection ambiguities

Similar paradigm: RadViz

RADVIZ

Color Scale
Price

- Medium
- Low
- High

$$
\begin{aligned}
P & =\sum_{i=1}^{n} w_{j} v_{j} \\
w_{i} & =d_{j} / \sum_{k=1}^{n} d_{k}
\end{aligned}
$$

$$
\frac{\mathrm{x}}{\mathbf{1}^{\mathrm{T}} \mathrm{X}}=(0.2,0.1,0,0.1,0.2,0.4)
$$

$$
\mathbf{x}=(0.5,0.25,0,0.25,0.5,1)
$$

Star coordinates
Comparison with Star-coordinates

RadViz
(b)

Radar CHART

Equivalent to a parallel coordinates plot, with the axes arranged radially

- each star represents a single observation
- can show outliers an commonalities nicely

Gymnast Scoring Radar Chart

Disadvantages

- hard to make trade-off decisions
- distorts data to some extents when lines are filled in

COMMONALITIES

All of these radial scatterplot displays share the following characteristics

- allow users to see the data points in the context of the variables
- but can suffer from projection ambiguity
- some offer interaction to resolve some of these shortcomings
- but interaction can be tedious

Are there visualization paradigms that can overcome these problems?

- yes, algorithms that optimize the layout to preserve distances or similarities in high-dimensional space
- what is this algorithm?
- yes, MDS (Multi-Dimensional Scaling)
- we have discussed MDS before (so we will skip further discussion)

Uses of MDS

Data layout

+ dataattribute similarity matrix (VD, DV)

Uses of MDS

Yields the Data Context Map

Data visualized in the context of the attributes

Data Context Map:
 Choose a Good University

S. Cheng, K. Mueller, "The Data Context Map: Fusing Data and Attributes into a Unified Display," IEEE Trans. on Visualization and
Computer Graphics, 22(1): 121-130, 2016.

youtube

DATA CONTEXT MAP IN ACTION

Data Context Map:
 Choose a Good University

TELLING STORIES WITH PARALLEL COORDINATES

EXAMPLE: SALES STRATEGY ANALYSIS

ANATOMY OF A SALES PIPELINE

THE SETUP

Scene:

- a meeting of sales executives of a large corporation, Vandelay Industries

Mission:

- review the strategies of their various sales teams

Evidence:

- data of three sales teams with a couple of hundred sales people in each team

Kate Explains IT AlL

Meet Kate, a sales analyst in the meeting room:

"OK...let's see, cost/won lead is nearby and it has a positive correlation with \#opportunities but also a negative correlation with \#won leads"

Kate Designs the Narration

"Let's go and make a revealing route!"

- she uses the mouse and designs the route shown
- she starts explaining the data like a story ...

FURTHER INSIGHT

Kate notices something else:

- now looking at the red team
- there seems to be a spread in effectiveness among the team
- the team splits into three distinct groups

She recommends: "Maybe fire the least effective group or at least retrain them"

Recent Reviewer Comment

From a paper sent to a software visualization conference:

Figure 8

- Multiple visualizations appear to present categorical data as line graphs, which seems a strange choice.

Recent Reviewer Comment

From a paper sent to a software visualization conference:

Figure 8

- Multiple visualizations appear to present categorical data as line graphs, which seems a strange choice. Figure 8, for example, at first sight appeared to be showing a change over time, but in fact further inspection shows that the different x-coordinates are almost entirely unrelated to one another and in no particular order.

Recent Reviewer Comment

From a paper sent to a software visualization conference:

Figure 8

- Multiple visualizations appear to present categorical data as line graphs, which seems a strange choice. Figure 8, for example, at first sight appeared to be showing a change over time, but in fact further inspection shows that the different x-coordinates are almost entirely unrelated to one another and in no particular order. This is such an unusual choice that I'm not sure that I am understanding the role of the graphs correctly.

How to Teach Mainstream Users

Learning Visualizations by Analogy

Puripant Ruchikachorn and Klaus Mueller

Stony Brook
University

User Studies

Encode user responses based on task complexities

- none (0):
- low (1):
- medium (2):
- high (3):
cannot report any findings
understand representation visual encoding identify groups and outliers recognize correlations and trends

User Studies - CAR DATASET

Visual understanding:

(1) The MPG of the orange-highlighted car is $\sim 40 \%$ of its range
(2) There is just one line at the top of the acceleration scale
(3) Heavier cars are faster

Data Understanding:

(1) The number of cylinders of the orange-highlighted car is 4, one fifth between 3 and 8.
(2) Many cars have the same numbers of cylinders, mostly even numbers particularly 4 and 8 .
(3) Heavier cars have more cylinders and hence more horsepower and speed.

RESULTS

Participants		V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
	Before	3	0	0	0	1	0	2	1	0	3	3
	After	3	2	2	1	2	2	3	2	1	3	3
	Diff.	0	2	2	1	1	2	1	1	1	0	0
		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
		0	2	3	1	1	3	1	1	2	0	3
		2	3	3	3	1	3	2	2	3	2	3
		2	1	0	2	0	0	1	1	1	2	0

Plot Selection

SCATTERPLOT MATRIX

Scatterplot version of parallel

 coordinates- distributes $\mathrm{n}(\mathrm{n}-1)$ bivariate relationships over a set of tiles
- for $n=4$ get 16 tiles
- can use $n(n-1) / 2$ tiles

For even moderately large n :

- there will be too many tiles

Which plots to select?

- plots that show correlations well

- plots that separate clusters well

SCATTERPLOT MATRIX

Scatter Plot Matrix

Scatterplot Matrix (SPLOM) for Diabetes Dataset Data source: [1]

Select the most interesting tiles and show them to the user

Automated Scatterplot Selection

Several metrics, a good one is Distance Consistency (DSC)

(a) $\mathbf{D S C}=90$

(b) $\mathbf{D S C}=49$

(a) 99
(d) 29
(e) 15

(b) 74
$\mathbf{D S C}=\frac{\mid x^{\prime} \in v(X): \mathbf{C D}\left(x^{\prime}, \operatorname{centr}^{\prime}\left(c_{\text {clabel }(x)}\right)=\text { true } \mid\right.}{k}$

- measures how "pure" a cluster is
- pick the views with highest normalized DSC

DUNN INDEX

Favors clusters that (1) are compact and (2) are well isolated

$$
D I_{m}=\frac{\min _{1 \leqslant i<j \leqslant m} \delta\left(C_{i}, C_{j}\right)}{\max _{1 \leqslant k \leqslant m} \Delta_{k}} . \longleftarrow \text { min separation }
$$

$\Delta_{i}=\frac{\sum_{x \in C_{i}} d(x, \mu)}{\left|C_{i}\right|}, \mu=\frac{\sum_{x \in C_{i}} x}{\left|C_{i}\right|}$, calculates distance of all the points from the mean.
$\delta\left(C_{i}, C_{j}\right)$ be this intercluster distance metric, between clusters C_{i} and C_{j}.

high Dunn Index low Dunn Index

determine the quality of k-means clustering

SCAGNOSTICS

Describe scatterplot features by graph theoretic measures

- mostly built on minimum spanning tree
- can be used to summarize large sets of scatterplots

Outlying
Skewed
Clumpy
Convex
Skinny
Striated
Stringy
Straight

SCATTERPLOT OF SCATTERPLOTS

Use scagnostics to quickly survey 1,000 s of

scatterplots

- compute scagnostics measures
- create scatterplot matrix of these measures
- each scatterplot is a point

